ArnR, a novel transcriptional regulator, represses expression of the narKGHJI operon in Corynebacterium glutamicum.
نویسندگان
چکیده
The narKGHJI operon that comprises putative nitrate/nitrite transporter (narK) and nitrate reductase (narGHJI) genes is required for the anaerobic growth of Corynebacterium glutamicum with nitrate as a terminal electron acceptor. In this study, we identified a gene, arnR, which encodes a transcriptional regulator that represses the expression of the narKGHJI operon in C. glutamicum cells under aerobic conditions. Disruption of arnR induced nitrate reductase activities of C. glutamicum cells and increased narKGHJI mRNA levels under aerobic growth conditions. DNA microarray analyses revealed that besides the narKGHJI operon, the hmp gene, which encodes flavohemoglobin, is negatively regulated by ArnR under aerobic conditions. Promoter-reporter assays indicated that arnR gene expression was positively autoregulated by its gene product, ArnR, under both aerobic and anaerobic conditions. Electrophoretic mobility shift assay experiments showed that purified hexahistidyl-tagged ArnR protein specifically binds to promoter regions of the narKGHJI operon and the hmp and arnR genes. A consensus sequence, TA(A/T)TTAA(A/T)TA, found in the promoter regions of these genes was demonstrated to be involved in the binding of ArnR. Effects on LacZ activity by deletion of the ArnR binding sites within the promoter regions fused to the reporter gene were consistent with the view that the expression of the narKGHJI operon is repressed by the ArnR protein under aerobic conditions, whereas the expression of the arnR gene is autoinduced by ArnR.
منابع مشابه
Role of the transcriptional regulator RamB (Rv0465c) in the control of the glyoxylate cycle in Mycobacterium tuberculosis.
Mycobacterium tuberculosis generally is assumed to depend on lipids as a major carbon and energy source when persisting within the host. The utilization of fatty acids requires a functional glyoxylate cycle with the key enzymes isocitrate lyase (Icl) and malate synthase. The open reading frame Rv0465c of M. tuberculosis H37Rv encodes a protein with significant sequence similarity to the transcr...
متن کاملIsoprenoid Pyrophosphate-Dependent Transcriptional Regulation of Carotenogenesis in Corynebacterium glutamicum
Corynebacterium glutamicum is a natural producer of the C50 carotenoid decaprenoxanthin. The crtEcg0722crtBIYEb operon comprises most of its genes for terpenoid biosynthesis. The MarR-type regulator encoded upstream and in divergent orientation of the carotenoid biosynthesis operon has not yet been characterized. This regulator, named CrtR in this study, is encoded in many actinobacterial genom...
متن کاملDevelopment of A Novel Gene Expression System for Secretory Production of Heterologous Proteins via the General Secretory (Sec) Pathway in Corynebacterium glutamicum
Background: Corynebacterium glutamicum (C. glutamicum) is a potential host for the secretory production of the heterologous proteins. However, to this date few secretion-type gene expression systems in C. glutamicum have been developed, which limit applications of C. glutamicum in a secretory production of the heterologous proteins.Objectives: In this stu...
متن کاملThe DeoR-type regulator SugR represses expression of ptsG in Corynebacterium glutamicum.
Corynebacterium glutamicum grows on a variety of carbohydrates and organic acids. Uptake of the preferred carbon source glucose via the phosphoenolpyruvate-dependent phosphotransferase system (PTS) is reduced during coutilization of glucose with acetate, sucrose, or fructose compared to growth on glucose as the sole carbon source. Here we show that the DeoR-type regulator SugR (NCgl1856) repres...
متن کاملRamB, a novel transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum.
The adaptation of Corynebacterium glutamicum to acetate as a carbon and energy source involves transcriptional regulation of the pta-ack operon coding for the acetate-activating enzymes phosphotransacetylase and acetate kinase and of the aceA and aceB genes coding for the glyoxylate cycle enzymes isocitrate lyase and malate synthase, respectively. Deletion and mutation analysis of the respectiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 190 9 شماره
صفحات -
تاریخ انتشار 2008